NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Whispering-Gallery-Mode Tunable Narrow-Band-Pass FilterAn experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the resonance quality factors (Q values) of the TM modes are higher. If Q values were not of major concern, it would be better to use the TE modes because the electro-optical shifts of the TE modes are 3 times those of the TM modes.
Document ID
20110016767
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Savchenkov, Anatoliy
(California Inst. of Tech. Pasadena, CA, United States)
Iltchenko, Vladimir
(California Inst. of Tech. Pasadena, CA, United States)
Matsko, Andrey
(California Inst. of Tech. Pasadena, CA, United States)
Maleki, Lute
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
April 1, 2004
Publication Information
Publication: NASA Tech Briefs, April 2004
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-30896
Report Number: NPO-30896
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available