NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mixed Conducting Electrodes for Better AMTEC CellsElectrode materials that exhibit mixed conductivity (that is, both electronic and ionic conductivity) have been investigated in a continuing effort to improve the performance of the alkali metal thermal-to-electric converter (AMTEC). These electrode materials are intended primarily for use on the cathode side of the sodium-ion-conducting solid electrolyte of a sodium-based AMTEC cell. They may also prove useful in sodium-sulfur batteries, which are under study for use in electric vehicles. An understanding of the roles played by the two types of conduction in the cathode of a sodium-based AMTEC cell is prerequisite to understanding the advantages afforded by these materials. In a sodium-based AMTEC cell, the anode face of an anode/solid-electrolyte/cathode sandwich is exposed to Na vapor at a suitable pressure. Upon making contact with the solid electrolyte on the anode side, Na atoms oxidize to form Na+ ions and electrons. Na+ ions then travel through the electrolyte to the cathode. Na+ ions leave the electrolyte at the cathode/electrolyte interface and are reduced by electrons that have been conducted through an external electrical load from the anode to the cathode. Once the Na+ ions have been reduced to Na atoms, they travel through the cathode to vaporize into a volume where the Na vapor pressure is much lower than it is on the anode side. Thus, the cathode design is subject to competing requirements to be thin enough to allow transport of sodium to the low-pressure side, yet thick enough to afford adequate electronic conductivity. The concept underlying the development of the present mixed conducting electrode materials is the following: The constraint on the thickness of the cathode can be eased by incorporating Na+ -ionconducting material to facilitate transport of sodium through the cathode in ionic form. At the same time, by virtue of the electronically conducting material mixed with the ionically conducting material, reduction of Na+ ions to Na atoms can take place throughout the thickness of the cathode. The net effect is to reduce the diffusion and flow resistance to sodium through the electrode while reducing the electronic resistance by providing shorter conduction paths for electrons. Reduced resistance to both sodium transport and electronic conductivity results in an increase in electric power output.
Document ID
20110023599
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Ryan, Margaret
(California Inst. of Tech. Pasadena, CA, United States)
Williams, Roger
(California Inst. of Tech. Pasadena, CA, United States)
Homer, Margie
(California Inst. of Tech. Pasadena, CA, United States)
Lara. Liana
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
February 1, 2003
Publication Information
Publication: NASA Tech Briefs, February 2003
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-20920
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available