NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Microscope Cells Containing Multiple Micromachined WellsTech Briefs, May 2003 19 Manufacturing Microscope Cells Containing Multiple Micromachined Wells The cost per cell has been reduced substantially. John H. Glenn Research Center, Cleveland, Ohio An improved design for multiple-well microscope cells and an associated improved method of fabricating them have been devised. [As used here, "well" denotes a cavity that has a volume of about 1 or 2 L and that is used to hold a sample for examination under a microscope. As used here, "cell" denotes a laminate, based on a standard 1- by 3-in. (2.54- by 7.62-cm) microscope slide, that comprises (1) the slide as the lower layer, (2) an intermediate layer that contains holes that serve as the wells, and (3) a top layer that either consists of, or is similar to, a standard microscope-slide cover slip.] The improved design and method of fabrication make it possible to increase (relative to a prior design and method of fabrication) the number of wells per cell while reducing the fabrication loss and reducing the cost per cell to about one-tenth of the prior value. In the prior design and method, the slide, well, and cover-slip layers were made from silicate glass. The fabrication of each cell was a labor-intensive process that included precise cutting and grinding of the glass components, fusing of the glass components, and then more grinding and polishing to obtain desired dimensions. Cells of the prior design were expensive and fragile, the rate of loss in fabrication was high, and the nature of the glass made it difficult to increase the number of cells per well. Efforts to execute alternative prior designs in plastic have not yielded satisfactory results because, for typical applications, plastics are not sufficiently thermally or chemically stable, not sufficiently optically clear, and/or not hard enough to resist scratching. The figure depicts a cell of the present improved type. The slide and cover-slip layers are made of a low-thermal-expansion glass (Pyrex(TradeMark) or equivalent) and the intermediate (well layer) is made of SiO2 - a combination of materials that results in a laminate stronger than one made from layers of silicate glass. Before the layers are assembled into the laminate, the SiO2 layer is micromachined to form the wells plus shallow grooves that, when subsequently covered with the cover slip, become capillary channels that are used to fill the wells with samples. The micromachining is accomplished by use of the same patterning and etching techniques used to fabricate microelectromechanical systems (MEMS).
Document ID
20110023808
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Turner, Walter
(DYNACS Engineering Co., Inc. Cleveland, OH, United States)
Skupinski, Robert
(DYNACS Engineering Co., Inc. Cleveland, OH, United States)
Date Acquired
August 25, 2013
Publication Date
May 1, 2003
Publication Information
Publication: NASA Tech Briefs, May 2003
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LEW-17016
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available