NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Capacitive Sensors for Measuring Masses of Cryogenic FluidsAn effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that height (see figure).
Document ID
20110023891
Acquisition Source
Kennedy Space Center
Document Type
Other - NASA Tech Brief
Authors
Nurge, Mark
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Youngquist, Robert
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Date Acquired
August 25, 2013
Publication Date
September 1, 2003
Publication Information
Publication: NASA Tech Briefs, September 2003
Subject Category
Man/System Technology And Life Support
Report/Patent Number
KSC-12457
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available