NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Real-Gas Effects on Binary Mixing LayersThis paper presents a computational study of real-gas effects on the mean flow and temporal stability of heptane/nitrogen and oxygen/hydrogen mixing layers at supercritical pressures. These layers consist of two counterflowing free streams of different composition, temperature, and density. As in related prior studies reported in NASA Tech Briefs, the governing conservation equations were the Navier-Stokes equations of compressible flow plus equations for the conservation of total energy and of chemical- species masses. In these equations, the expressions for heat fluxes and chemical-species mass fluxes were derived from fluctuation-dissipation theory and incorporate Soret and Dufour effects. Similarity equations for the streamwise velocity, temperature, and mass fractions were derived as approximations to the governing equations. Similarity profiles showed important real-gas, non-ideal-mixture effects, particularly for temperature, in departing from the error-function profile, which is the similarity solution for incompressible flow. The temperature behavior was attributed to real-gas thermodynamics and variations in Schmidt and Prandtl numbers. Temporal linear inviscid stability analyses were performed using the similarity and error-function profiles as the mean flow. For the similarity profiles, the growth rates were found to be larger and the wavelengths of highest instability shorter, relative to those of the errorfunction profiles and to those obtained from incompressible-flow stability analysis. The range of unstable wavelengths was found to be larger for the similarity profiles than for the error-function profiles
Document ID
20110023929
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Okong'o, Nora
(California Inst. of Tech. Pasadena, CA, United States)
Bellan, Josette
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
November 1, 2003
Publication Information
Publication: NASA Tech Briefs, November 2003
Subject Category
Fluid Mechanics And Thermodynamics
Report/Patent Number
NPO-40162
Report Number: NPO-40162
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available