NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriersyttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced proportions of scandia. The criterion used to judge these specimens was whether they retained the non-transformable tetragonal phase after a severe heat treatment of 140 hours at 1,400 C.
Document ID
20110023985
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Mess, Derek
(Cambridge Microtech, Inc. Cambridge, MA, United States)
Date Acquired
August 25, 2013
Publication Date
October 1, 2003
Publication Information
Publication: NASA Tech Briefs, October 2003
Subject Category
Man/System Technology And Life Support
Funding Number(s)
CONTRACT_GRANT: LEW-16789
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available