NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Rod/Coil Block Copolyimides for Ion-Conducting MembranesRod/coil block copolyimides that exhibit high levels of ionic conduction can be made into diverse products, including dimensionally stable solid electrolyte membranes that function well over wide temperature ranges in fuel cells and in lithium-ion electrochemical cells. These rod/coil block copolyimides were invented to overcome the limitations of polymers now used to make such membranes. They could also be useful in other electrochemical and perhaps some optical applications, as described below. The membranes of amorphous polyethylene oxide (PEO) now used in lithium-ion cells have acceptably large ionic conductivities only at temperatures above 60 C, precluding use in what would otherwise be many potential applications at lower temperatures. PEO is difficult to process, and, except at the highest molecular weights it is not very dimensionally stable. It would be desirable to operate fuel cells at temperatures above 80 C to take advantage of better kinetics of redox reactions and to reduce contamination of catalysts. Unfortunately, proton-conduction performance of a typical perfluorosulfonic polymer membrane now used as a solid electrolyte in a fuel cell decreases with increasing temperature above 80 C because of loss of water from within the membrane. The loss of water has been attributed to the hydrophobic nature of the polymer backbone. In addition, perfluorosulfonic polymers are expensive and are not sufficiently stable for long-term use. Rod/coil block copolyimides are so named because each molecule of such a polymer comprises short polyimide rod segments alternating with flexible polyether coil segments (see figure). The rods and coils can be linear, branched, or mixtures of linear and branched. A unique feature of these polymers is that the rods and coils are highly incompatible, giving rise to a phase separation with a high degree of ordering that creates nanoscale channels in which ions can travel freely. The conduction of ions can occur in the coil phase, the rod phase, or both phases.
Document ID
20110024024
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Meador, Mary Ann B.
(NASA Glenn Research Center Cleveland, OH, United States)
Kinder, James D.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
August 25, 2013
Publication Date
December 1, 2003
Publication Information
Publication: NASA Tech Briefs, December 2003
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LEW-17299
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available