NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Optoelectronic Tool Adds Scale Marks to Photographic ImagesA simple, easy-to-use optoelectronic tool projects scale marks that become incorporated into photographic images (including film and electronic images). The sizes of objects depicted in the images can readily be measured by reference to the scale marks. The role played by the scale marks projected by this tool is the same as that of the scale marks on a ruler placed in a scene for the purpose of establishing a length scale. However, this tool offers the advantage that it can put scale marks quickly and safely in any visible location, including a location in which placement of a ruler would be difficult, unsafe, or time-consuming. The tool (see Figure 1) includes an aluminum housing, within which are mounted four laser diodes that operate at a wavelength of 670 nm. The laser diodes are spaced 1 in. (2.54 cm) apart along a baseline. The laser diodes are mounted with setscrews, which are used to adjust their beams to make them all parallel to each other and perpendicular to the baseline. During the adjustment process, the effect of the adjustments is observed by measuring the positions of the laser-beam spots on a target 80 ft (approx.24 m) away. Once the adjustments have been completed, the laser beams define three 1-in. (2.54-cm) intervals and the location of each beam is defined to within 1/16 in. (approx.1.6 mm) at any target distance out to about 80 ft (approx.24 m). The distance between the laser-beam spots as seen in an image is strictly defined only along an axis parallel to the baseline and perpendicular to the laser beam (also perpendicular to the line of sight of the camera, assuming that the camera-to-target distance is much greater than the distance between the tool and the camera lens). If a flat target surface illuminated by the laser beams is tilted with respect to the aforesaid axis, then the distance along the target surface between scale marks is proportional to the secant of the tilt angle. If one knows the tilt angle, one can correct for it. Even if one does not know the tilt angle precisely, it may not matter: For example, at a tilt of 10 , the secant is approximately 1.0154, so that the tilt error is only about 1.54 percent, which is negligibly small for a typical application in which only approximate measurements are needed.
Document ID
20110024099
Acquisition Source
Kennedy Space Center
Document Type
Other - NASA Tech Brief
Authors
Stevenson, Charlie
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Rivera, Jorge
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Youngquist, Robert
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Cox, Robert
(DYNACS Engineering Co., Inc. Cocoa Beach, FL, United States)
Haskell, William
(DYNACS Engineering Co., Inc. Cocoa Beach, FL, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2003
Publication Information
Publication: NASA Tech Briefs, January 2003
Subject Category
Man/System Technology And Life Support
Report/Patent Number
KSC-12201
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available