NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Fiber-Reinforced Reactive Nano-Epoxy CompositesAn ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).
Document ID
20120000424
Acquisition Source
Marshall Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Zhong, Wei-Hong
(North Dakota State Univ. ND, United States)
Date Acquired
August 25, 2013
Publication Date
September 1, 2011
Publication Information
Publication: NASA Tech Briefs, September 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MFS-32666-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available