NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Marshall Convergent Spray Formulation Improvement for High TemperaturesThe Marshall Convergent Coating-1 (MCC-1) formulation was produced in the 1990s, and uses a standard bisphenol A epoxy resin system with a triamine accelerator. With the increasing heat rates forecast for the next generation of vehicles, higher-temperature sprayable coatings are needed. This work substitutes the low-temperature epoxy resins used in the MCC-1 coating with epoxy phenolic, epoxy novalac, or resorcinolinic resins (higher carbon content), which will produce a higher char yield upon exposure to high heat and increased glass transition temperature. High-temperature filler materials, such as granular cork and glass ecospheres, are also incorporated as part of the convergent spray process, but other sacrificial (ablative) materials are possible. In addition, the use of polyhedral oligomeric silsesquioxanes (POSS) nanoparticle hybrids will increase both reinforcement aspects and contribute to creating a tougher silacious char, which will reduce recession at higher heat rates. Use of expanding epoxy resin (lightweight MCC) systems are also useful in that they reduce system weight, have greater insulative properties, and a decrease in application times can be realized.
Document ID
20120000759
Acquisition Source
Johnson Space Center
Document Type
Other - NASA Tech Brief
Authors
Scarpa, Jack
(United Space Alliance Houston, TX, United States)
Patterson,Chat
(United Space Alliance Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
May 1, 2011
Publication Information
Publication: NASA Tech Brief, May 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MSC-24644-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available