NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Principles, Techniques, and Applications of Tissue MicrofluidicsThe principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and subsequent insertion into a diagnostic device. A more advanced form of tissue integration with microfluidics is tissue encapsulation, wherein the sample is completely encapsulated within a microfluidic device, to allow for full surface access. The immediate applications of these approaches lie with diagnostics of tissue slices and biopsy samples e.g. for cancer but the approaches would also be very useful in comparative genomics and other areas of fundamental research involving heterogeneous tissue samples.
Document ID
20120000796
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Wade, Lawrence A.
(California Inst. of Tech. Pasadena, CA, United States)
Kartalov, Emil P.
(University of Southern California United States)
Shibata, Darryl
(University of Southern California United States)
Taylor, Clive
(University of Southern California United States)
Date Acquired
August 25, 2013
Publication Date
July 1, 2011
Publication Information
Publication: NASA Tech Briefs, July 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47561
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available