NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Flight Test Results from the Rake Airflow Gage Experiment on the F-15BThe results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
Document ID
20120006692
Acquisition Source
Armstrong Flight Research Center
Document Type
Other - NASA Tech Brief
Authors
Frederick, Michael
(NASA Dryden Flight Research Facility Edwards, CA, United States)
Ratnayake, Nalin
(NASA Dryden Flight Research Facility Edwards, CA, United States)
Date Acquired
August 25, 2013
Publication Date
November 1, 2011
Publication Information
Publication: NASA Tech Briefs, November 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
DRC-009-018
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available