NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data AnalysisA limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ significantly.
Document ID
20120006705
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Street, K. W. Jr.
(NASA Glenn Research Center Cleveland, OH, United States)
Kobrick, R. L.
(Colorado Univ. Boulder, CO, United States)
Klaus, D. M.
(Colorado Univ. Boulder, CO, United States)
Date Acquired
August 25, 2013
Publication Date
November 1, 2011
Publication Information
Publication: NASA Tech Briefs, November 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LEW-18675-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available