NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Monolithic Flexure Pre-Stressed Ultrasonic HornsHigh-power ultrasonic actuators are generally assembled with a horn, backing, stress bolt, piezoelectric rings, and electrodes. The manufacturing process is complex, expensive, difficult, and time-consuming. The internal stress bolt needs to be insulated and presents a potential internal discharge point, which can decrease actuator life. Also, the introduction of a center hole for the bolt causes many failures, reducing the throughput of the manufactured actuators. A new design has been developed for producing ultrasonic horn actuators. This design consists of using flexures rather than stress bolts, allowing one to apply pre-load to the piezoelectric material. It also allows one to manufacture them from a single material/plate, rapid prototype them, or make an array in a plate or 3D structure. The actuator is easily assembled, and application of pre-stress greater than 25 MPa was demonstrated. The horn consists of external flexures that eliminate the need for the conventional stress bolt internal to the piezoelectric, and reduces the related complexity. The stress bolts are required in existing horns to provide prestress on piezoelectric stacks when driven at high power levels. In addition, the manufacturing process benefits from the amenability to produce horn structures with internal cavities. The removal of the pre-stress bolt removes a potential internal electric discharge point in the actuator. In addition, it significantly reduces the chances of mechanical failure in the piezoelectric stacks that result from the hole surface in conventional piezoelectric actuators. The novel features of this disclosure are: 1. A design that can be manufactured from a single piece of metal using EDM, precision machining, or rapid prototyping. 2. Increased electromechanical coupling of the horn actuator. 3. Higher energy density. 4. A monolithic structure of a horn that consists of an external flexure or flexures that can be used to pre-stress a solid piezoelectric structure rather than a bolt, which requires a through hole in the piezoelectric material. 5. A flexure system with low stiffness that accommodates mechanical creep with minor reduction in pre-stress.
Document ID
20120006710
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Sherrit, Stewart
(California Inst. of Tech. Pasadena, CA, United States)
Bao, Xiaoqi
(California Inst. of Tech. Pasadena, CA, United States)
Badescu, Mircea
(California Inst. of Tech. Pasadena, CA, United States)
Bar-Cohen, Yoseph
(California Inst. of Tech. Pasadena, CA, United States)
Allen, Phillip Grant
(California State Polytechnic Univ. Pomona, CA, United States)
Date Acquired
August 25, 2013
Publication Date
November 1, 2011
Publication Information
Publication: NASA Tech Briefs, November 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47610
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available