NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Wavefront Sensing Analysis of Grazing Incidence Optical SystemsWavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined through this WFS technique.
Document ID
20120007645
Acquisition Source
Goddard Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Rohrbach, Scott
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Saha, Timo
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 25, 2013
Publication Date
March 1, 2012
Publication Information
Publication: NASA Tech Briefs, March 2012
Subject Category
Man/System Technology And Life Support
Report/Patent Number
GSC-15926-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available