NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Self-Cleaning Particulate Prefilter MediaA long-term space mission requires efficient air revitalization performance to sustain the crew. Prefilter and particulate air filter media are susceptible to rapid fouling that adversely affects their performance and can lead to catastrophic failure of the air revitalization system, which may result in mission failure. For a long-term voyage, it is impractical to carry replacement particulate prefilter and filter modules due to the usual limitations in size, volume, and weight. The only solution to this problem is to reagentlessly regenerate prefilter and filter media in place. A method was developed to modify the particulate prefilter media to allow them to regenerate reagentlessly, and in place, by the application of modest thermocycled transverse or reversed airflows. The innovation may allow NASA to close the breathing air loop more efficiently, thereby sustaining the vision for manned space exploration missions of the future. A novel, self-cleaning coatings technology was developed for air filter media surfaces that allows reagentless in-place regeneration of the surface. The technology grafts thermoresponsive and nonspecific adhesion minimizing polymer nanolayer brush coatings from the prefilter media. These polymer nanolayer brush architectures can be triggered to contract and expand to generate a "pushing-off" force by the simple application of modestly thermocycled (i.e. cycling from ambient cabin temperature to 40 C) air streams. The nonspecific adhesion-minimizing properties of the coatings do not allow the particulate foulants to adhere strongly to the filter media, and thermocycled air streams applied to the media allow easy detachment and in-place regeneration of the media with minimal impact in system downtime or astronaut involvement in overseeing the process.
Document ID
20120014115
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Weber, Olivia
(Lynntech, Inc. College Station, TX, United States)
Lalwani, San-jiv
(Lynntech, Inc. College Station, TX, United States)
Sharma, Anjal
(Lynntech, Inc. College Station, TX, United States)
Date Acquired
August 26, 2013
Publication Date
September 1, 2012
Publication Information
Publication: NASA Tech Briefs, September 2012
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LEW-18848-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available