NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
An Intelligent Strain Gauge with Debond Detection and Temperature CompensationThe harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables debond detection and temperature compensation to be performed when the gauge is utilized on small test articles. It was also found that the element's mass must be relatively small to avoid overbearing the desired thermal dissipation characteristics. Detecting the degradation of a gauge s bond was reliably achieved by correlating thermal dissipation with the bond s integrity. This was accomplished by precisely coupling a NiCr element with a Karma element for accurately interjecting and quantifying thermal energy. A finite amount of thermal energy is consistently placed in the gauge by electrically powering the NiCr element. The energy will only be temporarily stored before it begins to dissipate into the surrounding structure through the gauge bond. The ability to transmit the energy into the structure becomes greatly inhibited by any discontinuity in the bond s substrate. Therefore, the way the thermal dissipation occurs will reveal even the slightest change in the integrity of the bond.
Document ID
20120017913
Acquisition Source
Stennis Space Center
Document Type
Other
Authors
Jensen, Scott L.
(NASA Stennis Space Center Stennis Space Center, MS, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2012
Subject Category
Electronics And Electrical Engineering
Report/Patent Number
NP-2012-09-00215-SSC
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available