NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Framework for Robust Multivariable Optimization of Integrated Circuits in Space ApplicationsApplication Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the new process specific device models. The system has been used in the design of time to digital converters for laser ranging and time-of-flight mass spectrometry to optimize analog, mixed signal and digital circuits such as charge sensitive amplifiers, comparators, delay elements, radiation tolerant dual interlocked (DICE) flip-flops and two of three voter gates.
Document ID
20130000277
Acquisition Source
Goddard Space Flight Center
Document Type
Other
Authors
DuMonthier, Jeffrey
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Suarez, George
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 27, 2013
Publication Date
March 2, 2013
Subject Category
Electronics And Electrical Engineering
Report/Patent Number
GSFC.ABS.7494.2012
Report Number: GSFC.ABS.7494.2012
Meeting Information
Meeting: IEEE Aerospace Conference
Location: Big Sky, MT
Country: United States
Start Date: March 2, 2013
End Date: March 9, 2013
Sponsors: Institute of Electrical and Electronics Engineers
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available