NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Electrostatic Evaluation of the ARES I FTS Antenna MaterialsSurface resistivity and volume resistivity data show all the tested non-metallic materials of the Ares I FTS antenna assembly to be insulative. The external materials (White foam, phenolic) should be able to develop a large surface charge density upon tribocharging with ice crystal impingement. Dielectric breakdown tests on the FTS antenna housing materials show that each of the insulative materials are very resistive to electrical breakdown. The thicknesses of these materials in a nominal housing should protect the antenna from direct breakdown from external triboelectric charging potentials. Per data from the Air Force study, a maximum external electric potential in the range of 100kV can be developed on surfaces tribocharged by ice crystal impingement. Testing showed that under operational pressure ranges, this level of exterior voltage can result in a potential of about 6 kV induced on the electrically floating interior antenna vanes. Testing the vanes up to this voltage level showed that electrostatic discharges can occur between the electrically floating vanes and the center, grounded screw heads. Repeated tests with multiple invisible and visible discharges caused only superficial physical damage to the vanes. Fourier analysis of the discharge signals showed that the frequency range of credible discharges would not interfere with the nominal operation of the FTS antenna. However, due to the limited scope, short timetable, and limited funding of this study, a direct measurement of the triboelectric charge that could be generated on the Ares I antenna housing when the rocket traverses an ice cloud at supersonic speeds was not performed. Instead, data for the limited Air Force study [3] was used as input for our experiments. The Air Force data used was not collected with a sensor located to provide us with the best approximation at the geometry of the Ares I rocket, namely that of the windshield electrometer, because brush discharges to the metal frame of the windshield periodically depleted any charge accumulated. The configuration of the Ares I antenna assembly does not include any exposed metals in the vicinity and the windshield data could not be used. Since the windshield sensor data was unusable, we decided that the Patch 2 location would provide us with a rough approximation to the Ares I antenna configuration and would give us an indication of the possible charging levels that would develop. This was the data that we used in this study. Whether these charging levels would be of the same order of magnitude as the actual charges developed by the Ares I traversing a cloud with ice particles is at this point unknown. An actual experimental test, requiring the acquisition of additional instrumentation, is strongly advised before a final recommendation can be formulated regarding the safe levels of electrostatic charging on the antenna housing. Thus the results of this study should be considered to be preliminary.
Document ID
20130001434
Acquisition Source
Kennedy Space Center
Document Type
Other
Authors
Hogue, Michael D.
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Calle, Carlos I.
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Date Acquired
August 27, 2013
Publication Date
August 27, 2010
Subject Category
Space Sciences (General)
Report/Patent Number
KSC-2012-309
ESPL-TR10-002
Report Number: KSC-2012-309
Report Number: ESPL-TR10-002
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available