NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and CompositesQuality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For each desired property for knife fabrication and performance, there is an alloy development strategy that optimizes behavior. Although BMG knives have been demonstrated as far back as 1995, they never found commercial success because they had to be ground (which presented problems because the alloys contained beryllium), they weren't low cost (because they weren't cast to a net-shape), they were brittle (because they were made with a low-quality commercial material), and they had extremely poor corrosion resistance (because corrosion was not well-understood in these materials). Ultimately, these shortcomings prevented the widespread commercialization. In the current work, the inventors have applied more than a decade of research on BMGs from Caltech and JPL to develop a better understanding of how to make BMG knives that exhibit an optimal combination of properties, processing and cost. Alloys have been developed based in titanium (and other metals), that exhibit high toughness, high hardness, excellent corrosion resistance, no ferromagnetism, edge-retaining selfsharpening, and the ability to be cast like a plastic using commercially available casting techniques (currently used by commercial companies such as Liquidmetal Technologies and Visser Precision Casting). The inventors argue that depending on the application (diving, military, tactical, utility, etc.) there is an optimal combination of design and alloy composition. Moreover, with new casting technologies not available at the inception of these materials, net-shaped knives can be cast into complex shapes that require no aftermarket forming, except for sharpening using water-cooled polishing wheel. These combinations of discoveries seek to make low-cost BMG knives commercially viable products that have no equal among metal or ceramic knives. Current work at JPL focuses on net-shape casting of these alloys and testing their mechanical properties versus commercially available knives to demonstrate their benefits.
Document ID
20140002269
Acquisition Source
Headquarters
Document Type
Other - NASA Tech Brief
Authors
Hoffman, Douglas C.
(California Inst. of Tech. Pasadena, CA, United States)
Potter, Benjamin
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
March 24, 2014
Publication Date
October 1, 2013
Publication Information
Publication: NASA Tech Briefs, October 2013
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-48850
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available