NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Asteroid 4 Vesta: A Fully Differentiated Dwarf PlanetOne conclusion derived from the study of meteorites is that some of them - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where metallic cores and basaltic crusts were formed. Telescopic observations show that there remains only one large asteroid with a basaltic crust, 4 Vesta; present day mean radius 263 km. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are cumulate gabbros, diabases and basalts from the upper crust. Howardites are impact-engendered breccias of diogenites and eucrites. A strong case can be made that HEDs are derived from Vesta. The NASA Dawn spacecraft orbited Vesta for 14 months returning data allowing geological, mineralogical, compositional and geophysical interpretations of Vesta's surface and structure. Combined with geochemical and petrological observations of HED meteorites, differentiation models for Vesta can be developed. Proto-Vesta probably consisted of primitive chondritic materials. Compositional evidence, primarily from basaltic eucrites, indicates that Vesta was melted to high degree (>=50%) which facilitated homogenization of the silicate phase and separation of immiscible Fe,Ni metal plus Fe sulphide into a core. Geophysical models based on Dawn data support a core of ~110 km radius. The silicate melt vigorously convected and initially followed a path of equilibrium crystallization forming a harzburgitic mantle, possibly overlying a dunitic restite. Once the fraction of crystals was sufficient to cause convective lockup, the remaining melt collected between the mantle and the cool thermal boundary layer. This melt undergoes fractional crystallization to form a dominantly orthopyroxenite (diogenite) lower crust. The initial thermal boundary layer of primitive chondritic material is gradually replaced by a mafic crust through impact disruption and foundering. The quenched mafic crust thickens over time through magma extrusion/intrusion. Melt from the residual magma ocean intrudes and penetrates the mafic crust forming cumulate eucrite plutons, and dikes, sills and flows of basaltic eucrite composition. The post-differentiation vestan structure is thus not too dissimilar from that of terrestrial planets: (i) a metallic core; (ii) an ultramafic mantle comprised of a lower dunitic layer (if melting was substantially <100%) and an upper cumulate harzburgitic layer; (iii) a lower crust of harzburgitic and orthopyroxenitic cumulates; and (iv) an upper mafic crust of basalts and diabases (melt compositions) with cumulate gabbro intrusions. Impacts have excavated to the lower crust and delivered howardites, eucrites and diogenites to Earth, but there is yet no evidence demonstrating excavation of the vestan mantlle.
Document ID
20140004857
Acquisition Source
Johnson Space Center
Document Type
Extended Abstract
Authors
Mittlefehldt, David
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
May 6, 2014
Publication Date
May 19, 2014
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
JSC-CN-30210
Report Number: JSC-CN-30210
Meeting Information
Meeting: Fermor Meeting 2014: Comparative Planetology
Location: London
Country: United Kingdom
Start Date: May 19, 2014
End Date: May 20, 2014
Sponsors: Geological Society, Royal Astronomical Society
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available