NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight ResearchAt the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST vehicle is a flexible laboratory for nascent technologies that would benefit from early life cycle flight research data It provides a robust and safe environment where innovative techniques can be explored in a fly-fix-fly rapid prototyping paradigm IRAC Simple adaptive control technologies can provide real benefits without undo complexity Adverse pilot/adaptive system interactions can be mitigated and tools have been developed to evaluate those interactions ICP Substantial fuel savings can be achieved over a broad range of vehicles and configurations with intelligent control solutions LVAC The AAC design is robust and effective for the SLS mission, and promises to provide benefits to other platforms as well OCLA Hopefully will show that structural feedback can be seamlessly integrated with performance and stability objectives All of these control technologies have been implemented into the same baseline control law and could be combined into one control solution that answers many pressing questions for modern vehicle configurations
Document ID
20140006737
Acquisition Source
Armstrong Flight Research Center
Document Type
Presentation
Authors
Miller, Christopher
(NASA Dryden Flight Research Center Edwards, CA United States)
Date Acquired
June 4, 2014
Publication Date
March 12, 2014
Subject Category
Aircraft Stability And Control
Research And Support Facilities (Air)
Report/Patent Number
DFRC-E-DAA-TN13729
Meeting Information
Meeting: Aerospace Control and Guidance Systems Committee Meeting
Location: Englewood CO
Country: United States
Start Date: March 12, 2014
End Date: March 14, 2014
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Keywords
flight controls
systems testbed
stability and control
No Preview Available