NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Filling-in of Near-infrared Solar Lines by Terrestrial Fluorescence and Other Geophysical Effects: Simulations and Space-based Observations from SCIAMACHY and GOSATGlobal mapping of terrestrial vegetation fluorescence from space has recently been accomplished with high spectral resolution (nu/nu greater than 35 000) measurements from the Japanese Greenhouse gases Observing SAellite (GOSAT). These data are of interest because they can potentially provide global information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling. Quantifying the impact of fluorescence on the O2-A band is important as this band is used for photon pathlength characterization in cloud- and aerosol-contaminated pixels for trace-gas retrievals including CO2. Here, we examine whether fluorescence information can be derived from space using potentially lower-cost hyperspectral instrumentation, i.e., more than an order of magnitude less spectral resolution (nu/nu approximately 1600) than GOSAT, with a relatively simple algorithm. We discuss laboratory measurements of fluorescence near one of the few wide and deep solar Fraunhofer lines in the long-wave tail of the fluorescence emission region, the calcium (Ca) II line at 866 nm that is observable with a spectral resolution of approximately 0.5 nm. The filling-in of the Ca II line due to additive signals from various atmospheric and terrestrial effects, including fluorescence, is simulated. We then examine filling-in of this line using the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) satellite instrument. In order to interpret the satellite measurements, we developed a general approach to correct for various instrumental artifacts that produce false filling-in of solar lines in satellite measurements. The approach is applied to SCIAMACHY at the 866 nm Ca II line and to GOSAT at 758 and 770 nm on the shoulders of the O2-A feature where there are several strong solar Fraunhofer lines that are filled in primarily by vegetation fluorescence. Finally, we compare temporal and spatial variations of SCIAMACHY additive signals with those of GOSAT and the Enhanced Vegetation Index (EVI) from the MODerate-resolution Imaging Spectroradiometer (MODIS). Although the derived additive signals from SCIAMACHY are extremely weak at 866 nm, their spatial and temporal variations are consistent with chlorophyll a fluorescence or another vegetation-related source. We also show that fillingin occurs at 866 nm over some barren areas, possibly originating from luminescent minerals in rock and soil.
Document ID
20140010542
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Joiner, Joanna
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Yoshida, Yasuko
(Science Systems and Applications, Inc. Lanham, MD, United States)
Vasilkov, A. P.
(Science Systems and Applications, Inc. Lanham, MD, United States)
Middleton, E. M.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Campbell, P. K. E.
(Maryland Univ. Baltimore County Baltimore, MD, United States)
Yoshida, Y.
(National Inst. for Environmental Studies Ibaraki, Japan)
Huze, A.
(Japan Aerospace Exploration Agency Ibaraki, Japan)
Corp, L. A.
(Sigma Space Corp. Lanham, MD, United States)
Date Acquired
August 8, 2014
Publication Date
April 24, 2012
Publication Information
Publication: Atmospheric Measurement Techniques
Publisher: Copernicus Publications
Volume: 5
Subject Category
Earth Resources And Remote Sensing
Report/Patent Number
GSFC-E-DAA-TN9416
Funding Number(s)
CONTRACT_GRANT: NNG09HP18C
CONTRACT_GRANT: NNG12HP08C
Distribution Limits
Public
Copyright
Public Use Permitted.
Keywords
vegetation
SCIAMACHY and GOSAT
fluorescene
No Preview Available