NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Increase of Ozone Concentrations, Its Temperature Sensitivity and the Precursor Factor in South ChinaConcerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD) in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 microgram m(exp -3) per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount) and surface air temperature (from the Atmospheric Infrared Sounder) displayed in the correlation maps for the PRD during the prominently high ozone period of July September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (19972010). While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2) and NO(sub x) in Hong Kong is not statistically significant whileNO2 of thePRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning precursors do not seem to adequately support an increasing ozone trend, measured surface levels of formaldehyde, a proxy for volatile organic compound (VOC) emissions, have risen significantly in the PRD (20042010). Hence, the reactive VOCs in the PRD are likely to be the main culprit for the increase of ozone, as far as precursors are concerned. Despite the prevailing problem, model simulations suggest prospects for improvement in the future.
Document ID
20150002129
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Lee, Y. C.
(City Univ. of Hong Kong Kowloon, Hong Kong)
Shindell, D. T.
(Columbia Univ. New York, NY, United States)
Faluvegi, G. ORCID
(Columbia Univ. New York, NY, United States)
Wenig, M.
(Ludwig-Maximilians-Univ. Munich, Germany)
Lam, Y. F.
(City Univ. of Hong Kong Kowloon, Hong Kong)
Ning, Z.
(City Univ. of Hong Kong Kowloon, Hong Kong)
Hao, S.
(City Univ. of Hong Kong Kowloon, Hong Kong)
Lai, C. S.
(City Univ. of Hong Kong Kowloon, Hong Kong)
Date Acquired
February 25, 2015
Publication Date
August 11, 2014
Publication Information
Publication: Tellus B: Chemical and Physical Meteorology
Publisher: Taylor & Francis Open
Volume: 66
Issue: 1
ISSN: 0280-6509
e-ISSN: 1600-0889
Subject Category
Environment Pollution
Report/Patent Number
GSFC-E-DAA-TN20066
Funding Number(s)
CONTRACT_GRANT: NNX14AB99A
Distribution Limits
Public
Copyright
Public Use Permitted.
Technical Review
Professional Review
Keywords
South China
Sensitivity and concentration
Ozone trends
Ozone precursors
Temperature sensitivity of ozone
Future ozone
No Preview Available