NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Initial Thrust Measurements of Marshall's Ion-ioN ThrusterElectronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V. Similar bursts in thrust are observed using a square waveform grid bias at 10 kHz and +/- 350 V for volumetric flow rates of 6, 10, and 12 sccm at 150, 350, and 350 W respectively. The only operating condition that exhibits repeated thrust spikes throughout thruster operation is the 24 sccm condition with a 5:1 mixture ratio at 150 W RF power using the 10 kHz square waveform acceleration grid bias. Thrust spikes for this condition measure 3 mN with an error of +/- 2.5 mN. There are no operating conditions tested that show continuous thrust production.
Document ID
20150016550
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Caruso, Natalie R. S.
(Georgia Inst. of Tech. Atlanta, GA, United States)
Scogin, Tyler
(Georgia Inst. of Tech. Atlanta, GA, United States)
Liu, Thomas M.
(Georgia Inst. of Tech. Atlanta, GA, United States)
Walker, Mitchell L. R.
(Georgia Inst. of Tech. Atlanta, GA, United States)
Polzin, Kurt A.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Dankanich, John W.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 27, 2015
Publication Date
July 27, 2015
Subject Category
Spacecraft Propulsion And Power
Report/Patent Number
M15-4748
Report Number: M15-4748
Meeting Information
Meeting: AIAA/SAE/ASEE Joint Propulsion Conference
Location: Orlando, FL
Country: United States
Start Date: July 27, 2015
End Date: July 29, 2015
Sponsors: American Society for Electrical Engineers, American Inst. of Aeronautics and Astronautics, Society of Automotive Engineers, Inc.
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available