NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Evaluation of an Impedance Threshold Device as a VIIP CountermeasureVisual Impairment /Intracranial Pressure (VIIP) is a top human spaceflight risk for which NASA does not currently have a proven mitigation strategy. Thigh cuffs (Braslets) and lower body negative pressure (LBNP; Chibis) devices have been or are currently being evaluated as a means to reduce VIIP signs and symptoms, but these methods alone may not provide sufficient relief of cephalic venous congestion and VIIP symptoms. Additionally, current LBNP devices are too large and cumbersome for their systematic use as a countermeasure. Therefore, a novel approach is needed that is easy to implement and provides specific relief of symptoms. This investigation will evaluate an impedance threshold device (ITD) as a VIIP countermeasure. The ITD works by providing up to 7 cm H2O (approximately 5 mmHg) resistance to inspiratory air flow, effectively turning the thorax into a vacuum pump upon each inhalation which lowers the intrathoracic pressure (ITP) and facilitates venous return to the heart. The ITD is FDA-approved and was developed to augment venous return to the central circulation and increase cardiac output during cardiopulmonary resuscitation (CPR) and in patients with hypotension. While the effect of ITD on CPR survival outcomes is controversial, the ITD's ability to lower ITP with a concomitant decrease in intracranial pressure (ICP) is well documented. A similar concept that creates negative ITP during exhalation (intrathoracic pressure regulator; ITPR) decreased ICP in 16 of 20 patients with elevated ICP in a hospital pilot study. ITP and central venous pressure (CVP) have been shown to decrease in microgravity however ITP drops more than CVP, indicating an increased transmural CVP. This could explain the paradoxical distention of jugular veins (JV) in microgravity despite lower absolute CVP and also suggests that JV transmural pressure is not dramatically elevated. Use of an ITD may lower JV pressure enough to remove or relieve cephalic venous congestion. During spaceflight experiments with Braslet thigh cuffs and modified (open-glottis) Mueller maneuvers, Braslets alone reduced cardiac preload but only reduced the internal JV (IJV) cross sectional area by 23%. The addition of Mueller maneuvers resulted in an IJV area reduction of 48%. This project will test if ITD essentially applies a Mueller maneuver with added negative ITP in every respiratory cycle, acting to: 1) reduce venous congestion in the neck and 2) potentially lower ICP. The expected mechanism of action is that in microgravity (or an analog) blood is relocated toward the heart from vasculature in the head and neck. Once validated, the ITD would be an exceptionally easy countermeasure to deploy and test on the ISS. Dosage could be altered though 1) duration of application and 2) inspiratory resistance set point. Effects could be additionally enhanced through co-application with other countermeasures such as thigh cuffs or LBNP.
Document ID
20150021483
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Ebert, D.
(Wyle Science, Technology and Engineering Group Houston, TX, United States)
Macias, B.
(Wyle Science, Technology and Engineering Group Houston, TX, United States)
Garcia, K.
(Wyle Science, Technology and Engineering Group Houston, TX, United States)
Stenger, M.
(Wyle Science, Technology and Engineering Group Houston, TX, United States)
Hargens, A.
(California Univ. San Diego, CA, United States)
Johnston, S.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
November 20, 2015
Publication Date
February 8, 2016
Subject Category
Aerospace Medicine
Man/System Technology And Life Support
Instrumentation And Photography
Report/Patent Number
JSC-CN-34853
Meeting Information
Meeting: 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016)
Location: Galveston, TX
Country: United States
Start Date: February 8, 2016
End Date: February 11, 2016
Sponsors: NASA Johnson Space Center
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available