NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Out-of-Autoclave Cure CompositesAs the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.
Document ID
20160005361
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Hayes, Brian S.
(Applied Poleramic, Inc. Benicia, CA, United States)
Date Acquired
April 26, 2016
Publication Date
August 1, 2015
Publication Information
Publication: An Overview of SBIR Phase 2 Materials Structures for Extreme Environments
Subject Category
Composite Materials
Metals And Metallic Materials
Nonmetallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available