NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects: A CFD Validation EffortA rotorcraft fuselage is typically designed with an emphasis on operational functionality with aerodynamic efficiency being of secondary importance. This results in a significant amount of drag during high-speed forward flight that can be a limiting factor for future high-speed rotorcraft designs. To enable higher speed flight, while maintaining a functional fuselage design (i.e., a large rear cargo ramp door), the NASA Rotary Wing Project has conducted both experimental and computational investigations to assess active flow control as an enabling technology for fuselage drag reduction. This paper will evaluate numerical simulations of a flow control system on a generic rotorcraft fuselage with a rotor in forward flight using OVERFLOW, a structured mesh Reynolds-averaged Navier-Stokes flow solver developed at NASA. The results are compared to fuselage forces, surface pressures, and PN flow field data obtained in a wind tunnel experiment conducted at the NASA Langley 14-by 22-Foot Subsonic Tunnel where significant drag and download reductions were demonstrated using flow control. This comparison showed that the Reynolds-averaged Navier-Stokes flow solver was unable to predict the fuselage forces and pressure measurements on the ramp for the baseline and flow control cases. While the CFD was able to capture the flow features, it was unable to accurately predict the performance of the flow control.
Document ID
20160005924
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Allan, Brian G.
(NASA Langley Research Center Hampton, VA, United States)
Schaeffler, Norman W.
(NASA Langley Research Center Hampton, VA, United States)
Jenkins, Luther N.
(NASA Langley Research Center Hampton, VA, United States)
Yao, Chung-Sheng
(NASA Langley Research Center Hampton, VA, United States)
Wong, Oliver D.
(Army Aviation Research and Development Command Hampton, VA, United States)
Tanner, Philip E.
(Army Aviation Research and Development Command Hampton, VA, United States)
Date Acquired
May 6, 2016
Publication Date
May 5, 2015
Subject Category
Fluid Mechanics And Thermodynamics
Aerodynamics
Report/Patent Number
NF1676L-19647
Report Number: NF1676L-19647
Meeting Information
Meeting: American Helicopter Society International Annual Forum & Technology Display
Location: Virginia Beach, VA
Country: United States
Start Date: May 5, 2015
End Date: May 7, 2015
Sponsors: American Helicopter Society, Inc.
Funding Number(s)
WBS: WBS 664817.02.07.03.01.02
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available