NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Shape Effect Analysis of Aluminum Projectile Impact on Whipple ShieldsThe informed design with respect to hypervelocity collisions involving micrometeoroid and orbital debris (MMOD) is influential to the success of space missions. For an orbit comparable to that of the International Space Station, velocities for MMOD can range from 1 to 15 km/s, with an average velocity around 10 km/cu s. The high energy released during collisions at these speeds can result in damage to a spacecraft, or worst-case, loss of the spacecraft, thus outlining the importance of methods to predict the likelihood and extent of damage due to an impact. Through experimental testing and numerical simulations, substantial work has been conducted to better understand the effects of hypervelocity impacts (HVI) on spacecraft systems and shields; however, much of the work has been focused on spherical impacting particles. To improve environment models for the analysis of MMOD, a large-scale satellite break-up test was performed at the Arnold Engineering and Development Complex to better understand the varied impactor geometries that could be generated from a large impact. As a part of the post-experiment analysis, an undertaking to characterize the irregular fragments generated is currently being performed by the University of Florida under the management of NASA's Orbital Debris Program Office at Johnson Space Center (JSC). DebriSat was a representative, modern LEO satellite that was catastrophically broken up in a HVI test. The test chamber was lined with a soft-catch system of foam panels that captured the fragments after impact. Initial predictions put the number of fragments larger than 2mm generated from the HVI at roughly 85,000. The number of fragments thus far extracted from the foam panels has exceeded 100,000, with that number continuously increasing. The shapes of the fragments vary dependent upon the material. Carbon-fiber reinforced polymer pieces, for instance, are abundantly found as thin, flat slivers. The characterization of these fragments with respect to their mass, size, and material composition needs to be summarized in a form that can be used in MMOD analysis. The mechanism that brings these fragment traits into MMOD analysis is through ballistic limit equations (BLE) that have been developed largely for a few types of materials1. As a BLE provides the failure threshold for a shield or spacecraft component based on parameters such as the projectile impact velocity and size, and the target's materials, thickness, and configuration, it is used to design protective shields for spacecraft such as Whipple shields (WS) to an acceptable risk level. The majority of experiments and simulations to test shields and validate BLEs have, heretofore, largely used spheres as the impactor, not properly reflecting the irregular shapes of MMOD. This shortfall has motivated a numerical impact analysis study of HVI involving non-spherical geometries to identify key parameters that environment models should provide.
Document ID
20160014007
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Carrasquilla, Maria J.
(Florida Univ. Gainesville, FL, United States)
Miller, Joshua E.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
December 1, 2016
Publication Date
April 24, 2017
Subject Category
Spacecraft Design, Testing And Performance
Report/Patent Number
JSC-CN-38198
Meeting Information
Meeting: Hypervelocity Impact Symposium
Location: Canterbury
Country: United Kingdom
Start Date: April 24, 2017
End Date: April 28, 2017
Sponsors: Kent Univ.
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available