NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Advisory – Planned Maintenance: On Monday, July 15 at 9 PM Eastern the STI Compliance and Distribution Services will be performing planned maintenance on the STI Repository (NTRS) for approximately one hour. During this time users will not be able to access the STI Repository (NTRS).

Back to Results
The Effect of Shock on the Amorphous Component in Altered BasaltInvestigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary igneous, shock metamorphic, and/or aqueous alteration occurring before or after the impact event) of the amorphous component in shocked basalt with the goal of unravelling the history of the Martian surface.
Document ID
20170001745
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Eckley, S. A.
(Texas Univ. Austin, TX, United States)
Wright, S. P.
(Pittsburgh Univ. Pittsburgh, PA, United States)
Rampe, E. B.
(NASA Johnson Space Center Houston, TX, United States)
Niles, P. B.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
February 22, 2017
Publication Date
March 20, 2017
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
JSC-CN-38730
Meeting Information
Meeting: Lunar and Planetary Science Conference
Location: The Woodlands, TX
Country: United States
Start Date: March 20, 2017
End Date: March 24, 2017
Sponsors: Lunar and Planetary Inst., NASA Johnson Space Center, Universities Space Research Association
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available