NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Sleep Environment Recommendations for Future Spaceflight VehiclesCurrent evidence demonstrates that astronauts experience sleep loss and circadian desynchronization during spaceflight. Ground-based evidence demonstrates that these conditions lead to reduced performance, increased risk of injuries and accidents, and short and long-term health consequences. Many of the factors contributing to these conditions relate to the habitability of the sleep environment. Noise, inadequate temperature and airflow, and inappropriate lighting and light pollution have each been associated with sleep loss and circadian misalignment during spaceflight operations and on Earth. As NASA prepares to send astronauts on long-duration, deep space missions, it is critical that the habitability of the sleep environment provide adequate mitigations for potential sleep disruptors. We conducted a comprehensive literature review summarizing optimal sleep hygiene parameters for lighting, temperature, airflow, humidity, comfort, intermittent and erratic sounds, and privacy and security in the sleep environment. We reviewed the design and use of sleep environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, military personnel and ship operators. We also reviewed the specifications and sleep quality data arising from every NASA spaceflight mission, beginning with Gemini. Finally, we conducted structured interviews with individuals experienced sleeping in non-traditional spaces including oil rig workers, Navy personnel, astronauts, and expeditioners. We also interviewed the engineers responsible for the design of the sleeping quarters presently deployed on the International Space Station. We found that the optimal sleep environment is cool, dark, quiet, and is perceived as safe and private. There are wide individual differences in the preferred sleep environment; therefore modifiable sleeping compartments are necessary to ensure all crewmembers are able to select personalized configurations for optimal sleep. A sub-optimal sleep environment is tolerable for only a limited time, therefore individual sleeping quarters should be designed for long-duration missions. In a confined space, the sleep environment serves a dual purpose as a place to sleep, but also as a place for storing personal items and as a place for privacy during non-sleep times. This need for privacy during sleep and wake appears to be critically important to the psychological well-being of crewmembers on long-duration missions.
Document ID
20170001764
Acquisition Source
Johnson Space Center
Document Type
Technical Memorandum (TM)
Authors
Flynn-Evans, Erin E.
(NASA Ames Research Center Moffett Field, CA, United States)
Caddick, Zachary A. ORCID
(San Jose State Univ. Research Foundation San Jose, CA, United States)
Gregory, Kevin
(San Jose State Univ. Research Foundation San Jose, CA, United States)
Date Acquired
February 23, 2017
Publication Date
December 1, 2016
Subject Category
Aerospace Medicine
Report/Patent Number
JSC-CN-37597
NASA/TM-2016-219282
Report Number: JSC-CN-37597
Report Number: NASA/TM-2016-219282
Distribution Limits
Public
Copyright
Public Use Permitted.
Technical Review
Single Expert
No Preview Available