NTRS - NASA Technical Reports Server

Back to Results
Conceptual Design of an Electric Sail Technology Demonstration Mission SpacecraftThere is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers, 3) Controllability of the space-craft via a voltage bias to steer itself through the solar system to destinations of discovery. These activities once demonstrated analytically, will require a technology demonstration mission (TDM) around the year2020 to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) mission could be initiated. A notional TDM spacecraft that meets the requirements of such a mission will be showcased in this paper.
Document ID
Document Type
Conference Paper
Wiegmann, Bruce M.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
March 1, 2017
Publication Date
February 3, 2017
Subject Category
Spacecraft Propulsion And Power
Report/Patent Number
AAS 17-142
Meeting Information
Annual AAS Guidance & Control Conference(Breckenridge, CO)
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 20170001820.pdf STI

Related Records

IDRelationTitle20170001821See AlsoThe Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft