NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Meteoroid Environment Modeling: The Meteoroid Engineering Model and Shower ForecastingThe meteoroid environment is often divided conceptually into meteor showers and the sporadic meteor background. It is commonly but incorrectly assumed that meteoroid impacts primarily occur during meteor showers; instead, the vast majority of hazardous meteoroids belong to the sporadic complex. Unlike meteor showers, which persist for a few hours to a few weeks, sporadic meteoroids impact the Earth's atmosphere and spacecraft throughout the year. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. The sporadic complex, despite its year-round activity, is not isotropic in its directionality. Instead, their apparent points of origin, or radiants, are organized into groups called "sources". The speed, directionality, and size distribution of these sporadic sources are modeled by the Meteoroid Engineering Model (MEM), which is currently in its second major release version (MEMR2) [Moorhead et al., 2015]. MEM provides the meteoroid flux relative to a user-provided spacecraft trajectory; it provides the total flux as well as the flux per angular bin, speed interval, and on specific surfaces (ram, wake, etc.). Because the sporadic complex dominates the meteoroid flux, MEM is the most appropriate model to use in spacecraft design. Although showers make up a small fraction of the meteoroid environment, they can produce significant short-term enhancements of the meteoroid flux. Thus, it can be valuable to consider showers when assessing risks associated with vehicle operations that are brief in duration. To assist with such assessments, the MEO issues an annual forecast that reports meteor shower fluxes as a function of time and compares showers with the time-averaged total meteoroid flux. This permits missions to do quick assessments of the increase in risk posed by meteor showers. Section II describes MEM in more detail and describes our current efforts to improve its characteristics for a future release. Section III describes the annual shower forecast and highlights recent improvements made to its algorithm and inputs.
Document ID
20170008074
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Moorhead, Althea V.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 30, 2017
Publication Date
May 15, 2017
Subject Category
Space Sciences (General)
Report/Patent Number
M17-5966
Meeting Information
Meeting: Applied Space Environments Conference (ASEC) 2017
Location: Huntsville, AL
Country: United States
Start Date: May 15, 2017
End Date: May 19, 2017
Sponsors: NASA Headquarters
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available