NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. A significant portion of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this level of propellant, a slosh analysis was performed. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned. SDO is a three-axis controlled, single fault tolerant spacecraft. The attitude sensor complement includes sixteen coarse Sun sensors, a digital Sun sensor, three two-axis inertial reference units, two star trackers, and four guide telescopes. Attitude actuation is performed either using four reaction wheels or eight thrusters, depending on the control mode, along with single main engine which nominally provides velocity-change thrust. The attitude control software has five nominal control modes: three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the Attitude Control Electronics (ACE) box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. To achieve and maintain a geosynchronous orbit for a 2974-kilogram spacecraft in a cost effective manner, the SDO team designed a high-efficiency propulsive system. This bi-propellant design includes a 100-pound-force main engine and eight 5-pound-force attitude control thrusters. The main engine provides high specific impulse for the maneuvers to attain GEO, while the smaller Attitude Control System (ACS) thrusters manage the disturbance torques of the larger main engine and provide the capability for much smaller orbit adjustment burns. SDO's large solar profile produces a large solar torque disturbance and momentum buildup. This buildup drives the frequency of momentum unloads via ACS thrusters. SDO requires 1409 kilograms (which is approximately half the launch mass) of propellant to achieve and maintain the GEO orbit while performing the momentum unloads for 10 years.
Document ID
20180000048
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Mason, Paul
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Starin, Scott R.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
January 3, 2018
Publication Date
August 8, 2011
Subject Category
Solar Physics
Fluid Mechanics And Thermodynamics
Propellants And Fuels
Report/Patent Number
LEGNEW-OLDGSFC-GSFC-LN-1084
Meeting Information
Meeting: AIAA Guidance, Navigation, and Control Conference 2011
Location: Portland, OR
Country: United States
Start Date: August 8, 2011
End Date: August 11, 2011
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available