NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Scattering and Radiative Properties of Morphologically Complex Carbonaceous Aerosols: A Systematic Modeling StudyThis paper provides a thorough modeling-based overview of the scattering and radiative properties of a wide variety of morphologically complex carbonaceous aerosols. Using the numerically-exact superposition T-matrix method, we examine the absorption enhancement, absorption Angstroem exponent (AAE), backscattering linear depolarization ratio (LDR), and scattering matrix elements of black-carbon aerosols with 11 different model morphologies ranging from bare soot to completely embedded soot-sulfate and soot-brown carbon mixtures. Our size-averaged results show that fluffy soot particles absorb more light than compact bare-soot clusters. For the same amount of absorbing material, the absorption cross section of internally mixed soot can be more than twice that of bare soot. Absorption increases as soot accumulates more coating material and can become saturated. The absorption enhancement is affected by particle size, morphology, wavelength, and the amount of coating. We refute the conventional belief that all carbonaceous aerosols have AAEs close to 1.0. Although LDRs caused by bare soot and certain carbonaceous particles are rather weak, LDRs generated by other soot-containing aerosols can reproduce strong depolarization measured by Burton et al. for aged smoke. We demonstrate that multi-wavelength LDR measurements can be used to identify the presence of morphologically complex carbonaceous particles, although additional observations can be needed for full characterization. Our results show that optical constants of the host/coating material can significantly influence the scattering and absorption properties of soot-containing aerosols to the extent of changing the sign of linear polarization. We conclude that for an accurate estimate of black-carbon radiative forcing, one must take into account the complex morphologies of carbonaceous aerosols in remote sensing studies as well as in atmospheric radiation computations.
Document ID
20180007331
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Liu, Li
(Columbia Univ. New York, NY, United States)
Mishchenko, Michael I.
(NASA Goddard Inst. for Space Studies New York, NY, United States)
Date Acquired
October 30, 2018
Publication Date
October 14, 2018
Publication Information
Publication: Remote Sensing
Publisher: MDPI
Volume: 10
Issue: 10
ISSN: 2072-4292
Subject Category
Earth Resources And Remote Sensing
Report/Patent Number
GSFC-E-DAA-TN62084
Report Number: GSFC-E-DAA-TN62084
ISSN: 2072-4292
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
Keywords
carbonaceous aerosols; scattering matrix; polarization; depolarization; absorpti
No Preview Available