NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Maps Suggest Transport and Source Processes of PM2.5 at 1 km x 1 km for the Whole San Joaquin Valley, Winter 2011 (Generalizations from DISCOVER-AQ)We present interpreted data analysis using MAIAC (Multiangle implementation of Atmospheric Correction) retrievals and appropriate RAPid Update Cycle (RAP) meteorology to map respirable aerosol (PM2.5) for the period January and February, 2011. The San Joaquin Valley is one of the unhealthiest regions in the USA for PM2.5 and related morbidity. The methodology evaluated can be used for the entire moderate-resolution imaging spectrometer (MODIS, VIIRS) data record. Other difficult areas of the West: Riverside, CA, Salt Lake City, UT, and Doa Ana County, NM share similar difficulties and solutions. The maps of boundary layer depth for 1116 hr local time from RAP allows us to interpret aerosol optical thickness as a concentration of particles in a nearly well-mixed box capped by clean air. That mixing is demonstrated by DISCOVER-AQ data and afternoon samples from the airborne measurements, P3B (on-board) and B200 (HSRL2 lidar). This data and the PM2.5 gathered at the deployment sites allowed us to estimate and then evaluate consistency and daily variation of the AOT to PM2.5 relationship. Mixed-effects modeling allowed a refinement of that relation from day to day; RAP mixed layers explained the success of previous mixed-effects modeling. Compositional, size-distribution, and MODIS angle-of-regard effects seem to describe the need for residual daily correction beyond ML depth.We report on an extension method to the entire San Joaquin Valley for all days with MODIS imagery using the permanent PM2.5 stations, evaluated for representativeness. Resulting map movies show distinct sources, particularly Interstate-5 (at approx. 1km x 1km resolution) and the broader Bakersfield area. Accompanying winds suggest transport effects and variable pathways of pollution cleanout. Such estimates should allow morbiditymortality studies. They should be also useful for actual model assimilations, where composition and sources are uncertain. We conclude with a description of new work to extend these insights to similar regions, e.g. interior valleys of California, the Po Valley, the Mediterranean litoral, and the Ganges Plain.This work show generalizable use of remote sensing, a major goal of DISCOVER-AQ, Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality.
Document ID
20180008596
Acquisition Source
Ames Research Center
Document Type
Abstract
Authors
Chatfield, R.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
December 18, 2018
Publication Date
December 16, 2016
Subject Category
Earth Resources And Remote Sensing
Report/Patent Number
ARC-E-DAA-TN38190
Report Number: ARC-E-DAA-TN38190
Meeting Information
Meeting: AGU Fall Meeting
Location: San Francisco, CA
Country: United States
Start Date: December 12, 2016
End Date: December 26, 2016
Sponsors: American Geophysical Union
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available