NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Energetic Particles of Cosmic Accelerators II: Active Galactic Nuclei and Gamma-ray BurstsThe high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Within our own galaxy, we have seen that energetic particles engage in a complex interplay with the galactic environment and even drive many of its key characteristics (for more information, see the first white paper in this series). On cosmological scales, the energetic particles supplied by the jets of active galactic nuclei (AGN) are an important source of energy for the intracluster and intergalactic media, providing a mechanism for regulating star formation and black hole growth and cultivating galaxy evolution (AGN feedback). Gamma-ray burst (GRB) afterglows encode information about their circumburst environment, which has implications for massive stellar winds during previous epochs over the stellar lifecycle. As such, GRB afterglows provide a means for studying very high-redshift galaxies since GRBs can be detected even if their host galaxy cannot. It has even been suggest that GRB could be used to measure cosmological distance scales if they could be shown to be standard candles. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. Despite the enormous progress in particle-in-cell and magnetohydrodynamic simulations, we have yet to pinpoint the processes involved in jet formation and collimation and the conditions under which they can occur. For that matter, we have yet to identify the mechanism(s) through which the jet accelerates energetic particles – is it the commonly invoked diffusive shock acceleration process or is another mechanism, such as magnetic reconnection, required? Do AGNs and GRBs accelerate hadrons, and if so, do they accelerate them to ultra-high energies and are there high-energy neutrinos associated with them? MeV gamma-ray astronomy, enabled by technological advances that will be realized in the coming decade, will provide a unique and indispensable perspective on the persistent mysteries of the energetic universe. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. Specifically, MeV astronomy will: 1. Determine whether AGNs accelerate CRs to ultra-high energies; 2. Provide the missing pieces for the physics of the GRB prompt emission; 3. Measure magnetization in cosmic accelerators and search for acceleration via reconnection.
Document ID
20190001889
Acquisition Source
Goddard Space Flight Center
Document Type
Other
Authors
Venters, Tonia M.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Guiriec, Sylvain
(George Washington Univ. Washington, DC, United States)
Lien, Amy Y.
(Maryland Univ. Baltimore County (UMBC) Baltimore, MD, United States)
Ajello, Marco
(Clemson Univ. SC, United States)
Brandt, Terri J.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Blumer, Harsha
(West Virginia Univ. Morgantown, WV, United States)
Briggs, Michael
(Alabama Univ. Huntsville, AL, United States)
Coppi, Paolo
(Yale Univ. New Haven, CT, United States)
D’Ammando, Filippo
(Istituto di Radioastronomia Bologna, Italy)
Fields, Brian
(Illinois Univ. Urbana-Champaign, IL, United States)
Finke, Justin
(Naval Research Lab. Washington, DC, United States)
Fryer, Chris
(Los Alamos National Laboratory Los Alamos, NM, United States)
Hamaguchi, Kenji
(Maryland Univ. Baltimore County (UMBC) Baltimore, MD, United States)
Harding, J. Patrick
(Los Alamos National Laboratory Los Alamos, NM, United States)
Hewitt, John W.
(University of North Florida Jacksonville, FL, United States)
Humensky, Brian
(Columbia Univ. New York, NY, United States)
Hunter, Stanley D.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Li, Hui
(Los Alamos National Laboratory Los Alamos, NM, United States)
Longo, Francesco
(Università degli studi di Trieste Trieste, Italy)
McEnery, Julie
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Ojha, Roopesh
(Maryland Univ. Baltimore County (UMBC) Baltimore, MD, United States)
Pavlidou, Vasiliki
(Crete Univ. Crete, Greece)
Petropoulou, Maria
(Princeton Univ. Princeton, NJ, United States)
Prescod-Weinstein, Chanda
(New Hampshire Univ. Durham, NH, United States)
Rani, Bindu
(Universities Space Research Association (USRA) Greenbelt, MD, United States)
Santander, Marcos
(Alabama Univ. Huntsville, AL, United States)
Tomsick, John A.
(California Univ. Berkeley, CA, United States)
Wadiasingh, Zorawar
(Universities Space Research Association (USRA) Greenbelt, MD, United States)
Walter, Roland
(Université de Genève Geneva, Switzerland)
Date Acquired
March 26, 2019
Publication Date
March 11, 2019
Subject Category
Astrophysics
Report/Patent Number
GSFC-E-DAA-TN66972
Funding Number(s)
CONTRACT_GRANT: NNH15CO48B
CONTRACT_GRANT: 80GSFC17M0002
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
No Preview Available