NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Effects of CDKN1a/p21 on Oxidative Stress and Mitochondrial Function During Long Duration SpaceflightBroad tissue degeneration and the failure of normal tissue regenerative processes in microgravity because of mechanical unloading are increasing concerns for sustaining life in space as the duration of future flight missions increases. Work in our laboratory has identified normal adult stem cell-based tissue regenerative processes, such as the formation of new bone, cartilage, and immune cells, as being particularly sensitive to the stresses of mechanical unloading in microgravity. Our studies have also identified the inhibition of differentiation of marrow mesenchymal stem cells and activation of CDKN1ap21-mediated cell cycle arrest in proliferative osteoprecursor cells on the bone surface as potential mechanisms for spaceflight-induced skeletal changes. This finding, in combination with the role of CDKN1ap21 as a suppressor of mammalian tissue regeneration, suggests that this gene could be responsible for suppressing stem cell-based tissue regeneration in response to disuse. In this work, we hypothesized that CDKN1ap21 regulates regenerative bone formation in response to alterations in mechanical load and tested this hypothesis by studying the skeletal phenotype and stem cell regenerative ability of juvenile (4-11 weeks old) and adult (18 weeks-12 months old) p21 (--) knockout (KO) mice. Additionally, we analyzed bone micro-architectural properties, bone formation rates and differentiation capacity of bone marrow stem cells (BMSCs) from male and female KO mice exposed to hindlimb unloading (HU) for 15-30 days. We found that juvenile KO mice exhibited increased femoral trabecular and cortical bone formation, whilst three-point bending of the tibias from KO mice showed decreased bone stiffness. Conversely, adult KO mice exhibited no significant differences in micro-architectural properties compared to WT (wild-type) but woven bone structure was indicative of rapid bone remodeling. Furthermore, cortical bone properties showed similar characteristics to aged bone, including increased cross-sectional area and perimeter, whilst three-point bending showed increased stiffness and toughness. Interestingly, in-vitro, KO mice exhibited increased differentiation and mineralized nodule formation in osteoblastogenesis assays compared to WT. Preliminary results from CDKN1ap21 KO mice subjected to HU suggest altered sensitivity to mechanical unloading resulting in decreased cortical thickness compared to WT mice. However, KO mice subjected to short and long-duration HU show increased in-vitro differentiation potential of BMSCs to from form mature, mineral-forming osteoblasts, indicating maintenance of regenerative potential. Analysis of bone formation rates, cell proliferation rates and key genes of interest are currently underway. These results indicate a novel role for CDKN1ap21 in load-dependent osteoprogenitor proliferation and differentiation and that deletion of CDKN1ap21 results in an age-dependent release of osteoblast proliferation inhibition and increased bone formation and turnover.
Document ID
20190027605
Acquisition Source
Ames Research Center
Document Type
Presentation
Authors
Stimpel, Olivia
(Blue Marble Space Seattle, WA, United States)
Almeida, Eduardo
(NASA Ames Research Center Moffett Field, CA, United States)
Blaber, Elizabeth A.
(Universities Space Research Association (USRA) Moffett Field, CA, United States)
Date Acquired
July 23, 2019
Publication Date
October 25, 2017
Subject Category
Life Sciences (General)
Report/Patent Number
ARC-E-DAA-TN43922
Meeting Information
Meeting: Annual Meeting American Society for Gravitational and Space Research (ASGSR)
Location: Seattle, WA
Country: United States
Start Date: October 25, 2017
End Date: October 28, 2017
Sponsors: American Society for Gravitational and Space Research (ASGSR)
Funding Number(s)
CONTRACT_GRANT: NNA16BD14C
CONTRACT_GRANT: NNX15AG98A
Distribution Limits
Public
Copyright
Public Use Permitted.
Technical Review
Single Expert
Keywords
Stem Cells
Hindlimb Unloading
Tissue Regeneration
No Preview Available