NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Advancing the Standards for Unmanned Air System Communications, Navigation and SurveillanceUnder NASA program NNA16BD84C, new architectures were identified and developed for supporting reliable and secure Communications, Navigation and Surveillance (CNS) needs for Unmanned Air Systems (UAS) operating in both controlled and uncontrolled airspace. An analysis of architectures for the two categories of airspace and an implementation technology readiness analysis were performed. These studies produced NASA reports that have been made available in the public domain and have been briefed in previous conferences. We now consider how the products of the study are influencing emerging directions in the aviation standards communities. The International Civil Aviation Organization (ICAO) Communications Panel (CP), Working Group I (WG-I) is currently developing a communications network architecture known as the Aeronautical Telecommunications Network with Internet Protocol Services (ATN/IPS). The target use case for this service is secure and reliable Air Traffic Management (ATM) for manned aircraft operating in controlled airspace. However, the work is more and more also considering the emerging class of airspace users known as Remotely Piloted Aircraft Systems (RPAS), which refers to certain UAS classes. In addition, two Special Committees (SCs) in the Radio Technical Commission for Aeronautics (RTCA) are developing Minimum Aviation System Performance Standards (MASPS) and Minimum Operational Performance Standards (MOPS) for UAS. RTCA SC-223 is investigating an Internet Protocol Suite (IPS) and AeroMACS aviation data link for interoperable (INTEROP) UAS communications. Meanwhile, RTCA SC-228 is working to develop Detect And Avoid (DAA) equipment and a Command and Control (C2) Data Link MOPS establishing LBand and C-Band solutions. These RTCA Special Committees along with ICAO CP WG/I are therefore overlapping in terms of the Communication, Navigation and Surveillance (CNS) alternatives they are seeking to provide for an integrated manned- and unmanned air traffic management service as well as remote pilot command and control. This paper presents UAS CNS architecture concepts developed under the NASA program that apply to all three of the aforementioned committees. It discusses the similarities and differences in the problem spaces under consideration in each committee, and considers the application of a common set of CNS alternatives that can be widely applied. As the works of these committees progress, it is clear that the overlap will need to be addressed to ensure a consistent and safe framework for worldwide aviation. In this study, we discuss similarities and differences in the various operational models and show how the CNS architectures developed under the NASA program apply.
Document ID
20200000007
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Ponchak, Denise S.
(NASA Glenn Research Center Cleveland, OH, United States)
Templin, Fred L.
(Boeing Company Seattle, WA, United States)
Sheffield, Greg
(Boeing Company Seattle, WA, United States)
Taboso, Pedro
(Boeing Company Seattle, WA, United States)
Jain, Raj
(Washington Univ. Saint Louis, MO, United States)
Date Acquired
January 2, 2020
Publication Date
March 11, 2019
Subject Category
Aircraft Communications And Navigation
Report/Patent Number
GRC-E-DAA-TN74372
Meeting Information
Meeting: 2019 IEEE Aerospace Conference
Location: Big Sky, MT
Country: United States
Start Date: March 2, 2019
End Date: March 9, 2019
Sponsors: Institute of Electrical and Electronics Engineers (IEEE)
Funding Number(s)
WBS: 629660.02.40.03.01
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available