NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Two-sided-Loop X-Ray Solar Coronal Jet and a Sudden Photospheric Magnetic-field Change, Both Driven by a Minifilament EruptionMost of the commonly discussed solar coronal jets are of the type consisting of a single spire extending approximately vertically from near the solar surface into the corona. Recent research of a substantial number of events shows that eruption of a miniature filament (minifilament) drives at least many such single-spire jets, and concurrently generates a miniflare at the eruption site. A different type of coronal jet, identified in X-ray images during the Yohkoh era, are two-sided-loop jets, which extend from a central excitation location in opposite directions, along two opposite low-lying coronal loops that are more-or-less horizontal to the surface. We observe such a two-sided-loop jet from the edge of active region (AR) 12473, using data from Hinode XRT and EIS, and SDO AIA and HMI. Similar to single-spire jets, this two-sided-loop jet results from eruption of a minifilament, which accelerates to over 140 km/s before abruptly stopping upon striking overlying nearlyhorizontal magnetic field at ∼30,000 km altitude and producing the two-sided-loop jet via interchange reconnection. Analysis of EIS raster scans show that a hot brightening, consistent with a small flare, develops in the aftermath of the eruption, and that Doppler motions (∼40 km/s) occur near the jet-formation region. As with many single-spire jets, the trigger of the eruption here is apparently magnetic flux cancelation, which occurs at a rate of ∼4×10^18 Mx/hr, comparable to the rate observed in some single-spire AR jets. This example of a two-sided jet, along with numerous examples of single-spire jets, supports that essentially all coronal jets result from eruptions of minifiaments, and frequently the eruption of the minifilment is triggered by magnetic flux cancelation. (Details are in Sterling et al. 2019, ApJ, 871, 220.)
Document ID
20200000411
Acquisition Source
Marshall Space Flight Center
Document Type
Poster
Authors
Sterling, Alphonse C.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Harra, Louise K.
(Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland)
Moore, Ronald L.
(Alabama Univ. Huntsville, AL, United States)
Falconer, David A.
(Alabama Univ. Huntsville, AL, United States)
Date Acquired
January 16, 2020
Publication Date
December 9, 2019
Subject Category
Solar Physics
Report/Patent Number
MSFC-E-DAA-TN75820
Meeting Information
Meeting: Meeting of the American Astronomical Society (AAS 2019)
Location: St. Louis, MO
Country: United States
Start Date: June 9, 2019
End Date: June 13, 2019
Sponsors: American Astronomical Society
Funding Number(s)
CONTRACT_GRANT: NNM11AA01A
Distribution Limits
Public
Copyright
Portions of document may include copyright protected material.
No Preview Available