NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Ab Initio Simulations of Martensitic Phase Transformations in NiTi-based High Temperature Ternary Shape Memory Alloys: NiTiHf and NiTiZrAb initio simulations of phase stability and martensitic phase transitions are performed for NiTi-based ternary shape memory alloys (SMAs). Specifically, we considered NiTiHf and NiTiZr, which are highly studied for high temperature SMA applications. Previously, we performed investigations of ordered NiTi and related binaries [1,2]. However, similar approaches for chemically disordered compounds present additional difficulties. In this work, special quasi-random structures (SQS) were generated for various compositions, x∈[0,0.5], of Ni0.5Ti(0.5-x)Hfx and Ni0.5Ti(0.5-x)Zrx to capture chemical disorder of off-stoichiometric compounds. Phase stability was evaluated through analysis of finite temperature phonon spectra using temperature dependent effective potential (TDEP) method. Free energies for the cubic B2 phase of NiTiHf and NiTiZr were computed using ab initio thermodynamic integration (AITI) developed previously [1,2]. Free energies for monoclinic B19’ and orthorhombic B33 phases were evaluated via quasi harmonic approximations (QHA). Our results show a critical composition (xc) where the three phases of B2, B19’ and B33 meet, i.e. there is a tri-critical point. For xxc, the transition is between B33 and B2, i.e. it is not a shape memory transition. The approach presented here opens the door to ab initio based predictions of MTT for arbitrary ternary SMAs.
Document ID
20205008411
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Hessam Malmir
(KBR (United States) Houston, Texas, United States)
Zhigang Wu
(KBR (United States) Houston, Texas, United States)
Justin B. Haskins
(Ames Research Center Mountain View, California, United States)
Othmane Benafan
(Glenn Research Center Cleveland, Ohio, United States)
John W. Lawson
(Ames Research Center Mountain View, California, United States)
Date Acquired
October 5, 2020
Subject Category
Metals And Metallic Materials
Meeting Information
Meeting: SMST (Shape Memory and Superelastic Technologies) Conference and Exposition
Location: San Diego, CA
Country: US
Start Date: May 17, 2021
End Date: May 21, 2021
Sponsors: ASM International
Funding Number(s)
CONTRACT_GRANT: 80ARC020D0010
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available