NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Bias in CMIP6 Models as Compared to Observed Regional Dimming and BrighteningAnthropogenic aerosol emissions have increased considerably over the last century, but climate effects and quantification of the emissions are highly uncertain as one goes back in time. This uncertainty is partly due to a lack of observations in the pre-satellite era, making the observations we do have before 1990 additionally valuable. Aerosols suspended in the atmosphere scatter and absorb incoming solar radiation and thereby alter the Earth's surface energy balance. Previous studies show that Earth system models (ESMs) do not adequately represent surface energy fluxes over the historical era. We investigated global and regional aerosol effects over the time period 1961–2014 by looking at surface downwelling shortwave radiation (SDSR). We used observations from ground stations as well as multiple experiments from eight ESMs participating in the Coupled Model Intercomparison Project Version 6 (CMIP6). Our results show that this subset of models reproduces the observed transient SDSR well in Europe but poorly in China. We suggest that this may be attributed to missing emissions of sulfur dioxide in China, sulfur dioxide being a precursor to sulfate, which is a highly reflective aerosol and responsible for more reflective clouds. The emissions of sulfur dioxide used in the models do not show a temporal pattern that could explain observed SDSR evolution over China. The results from various aerosol emission perturbation experiments from DAMIP, RFMIP and AerChemMIP show that only simulations containing anthropogenic aerosol emissions show dimming, even if the dimming is underestimated. Simulated clear-sky and all-sky SDSR do not differ greatly, suggesting that cloud cover changes are not a dominant cause of the biased SDSR evolution in the simulations. Therefore we suggest that the discrepancy between modeled and observed SDSR evolution is partly caused by erroneous aerosol and aerosol precursor emission inventories. This is an important finding as it may help interpret whether ESMs reproduce the historical climate evolution for the right or wrong reason.
Document ID
20210000317
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Kine Onsum Moseid
(Norwegian Meteorological Institute Oslo, Norway)
Michael Schulz
(Norwegian Meteorological Institute Oslo, Norway)
Trude Storelvmo
(University of Oslo Oslo, Oslo, Norway)
Ingeborg Rian Julsrud
(University of Oslo Oslo, Oslo, Norway)
Dirk Olivie
(Norwegian Meteorological Institute Oslo, Norway)
Pierre Nabat
(University of Toulouse Toulouse, Midi-Pyrénées, France)
Martin Wild
(ETH Zurich Zurich, Switzerland)
Jason N S Cole
(Environment Canada Gatineau, Quebec, Canada)
Toshihiko Takemura
(Kyushu University Fukuoka, Japan)
Naga Oshima
(Japan Meteorological Agency Tokyo, Japan)
Susanne E Bauer
(Goddard Institute for Space Studies New York, New York, United States)
Guillaume Gastineau
(Sorbonne University Paris, France)
Date Acquired
January 12, 2021
Publication Date
December 22, 2020
Publication Information
Publication: Atmospheric Chemistry and Physics
Publisher: Copernicus / European Geophysical Union
Volume: 20
Issue: 24
ISSN: 1680-7316
e-ISSN: 1680-7324
Subject Category
Meteorology And Climatology
Funding Number(s)
WBS: 509496.02.08.04.24
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
Technical Review
External Peer Committee
Keywords
surface downwelling shortwave radiation (SDSR)
Coupled Model Intercomparison Project Version 6 (CMIP6)
Anthropogenic aerosol emissions
sulfur dioxide
No Preview Available