NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
HydroCube Mission Concept: P-Band Signals of Opportunity for Remote Sensing of Snow and Root Zone Soil MoistureWe have developed the HydroCube mission concept with a constellation of small satellites to remotely sense Snow Water Equivalent (SWE) and Root Zone Soil Moisture (RZSM). The HydroCube satellites would operate at sun-synchronous 3-day repeat polar orbits with a spatial resolution of about 1-3 Km. The mission goals would be to improve the estimation of terrestrial water storage and weather forecasts. Root-zone soil moisture and snow water storage in land are critical parameters of the water cycle. The HydroCube Signals of Opportunity (SoOp) concept utilizes passive receivers to detect the reflection of strong existing P-band radio signals from geostationary Mobile Use Objective System (MUOS) communication satellites. The SWE remote sensing measurement principle using the P-band SoOp is based on the propagation delay (or phase change) of radio signals through the snowpack. The time delay of the reflected signal due to the snowpack with respect to snow-free conditions is directly proportional to the snowpack SWE. To address the ionospheric delay at P-band frequencies, the signals from both MUOS bands (360-380 MHz and 250-270 MHz) would be used. We have conducted an analysis to trade off the spatial resolution for a space-based sensor and measurement accuracy. Through modeling analysis, we find that the dual-band MUOS signals would allow estimation of soil moisture and surface roughness together. From the two MUOS frequencies at 260 MHz and 370 MHz, we can retrieve the soil moisture from the reflectivity ratio scaled by wavenumbers using the two P-band frequencies for MUOS. A modeling analysis using layered stratified model has been completed to determine the sensitivity requirements of HydroCube measurements. For mission concept demonstration, a field campaign has been conducted at the Fraser Experimental Forest in Colorado since February 2016. The data acquired has provided support to the HydroCube concept.
Document ID
20210007956
Acquisition Source
Jet Propulsion Laboratory
Document Type
Preprint (Draft being sent to journal)
External Source(s)
Authors
Derksen, Chris
Durande, Michael
Liston, Glen
Margulis, Steve
Chae, Chun Sik
Elder, Kelly
Xu, Xiaolan
Shah, Rashmi
Yueh, Simon
Date Acquired
September 11, 2017
Publication Date
September 11, 2017
Publication Information
Publisher: Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2017
Distribution Limits
Public
Copyright
Other
Technical Review

Available Downloads

There are no available downloads for this record.
No Preview Available