NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Possible Impacts of Snow Darkening Effects on the Hydrological Cycle over Western Eurasia and
East Asia
In this paper, we investigated the possible impact of snow darkening effect (SDE) by
light-absorbing aerosols on the regional changes of the hydrological cycle over Eurasia using the NASA GEOS-5 Model with aerosol tracers and a state-of-the-art snow darkening module, the Goddard SnoW Impurity Module (GOSWIM) for the land surface. Two sets of ten-member ensemble experiments for 10 years were carried out forced by prescribed sea surface temperature (2002–2011) with different atmospheric initial conditions, with and without SDE, respectively. Results show that SDE can exert a significant regional influence in partitioning the contributions of evaporative and advective processes on the hydrological cycle, during spring and summer season. Over western Eurasia, SDE-induced rainfall increase during early spring can be largely explained by the increased evaporation from snowmelt. Rainfall, however, decreases in early summer due to the reduced evaporation as well as moisture divergence and atmospheric subsidence associated with the development of an anomalous mid- to upper-tropospheric anticyclonic circulation. On the other hand, in the East Asian monsoon region, moisture advection from the adjacent ocean is a main contributor to rainfall increase in the melting season. A warmer land-surface caused by earlier snowmelt and subsequent drying further increases moisture transport and convergence significantly enhancing rainfall over the region. Our findings suggest that the SDE may play an important role in leading to hotter and drier summers over western Eurasia, through coupled land-atmosphere interaction, while enhancing East Asian summer monsoonal precipitation via enhanced land-ocean thermal contrast and moisture transport due to the SDE-induced warmer Eurasian continent.
Document ID
20210013117
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Jeong Sang
(Kongju National University Gongju, South Korea)
Maeng-Ki Kim ORCID
(Kongju National University Gongju, South Korea)
William K M Lau ORCID
(EMERITUS)
Kyu-Myong Kim
(Goddard Space Flight Center Greenbelt, Maryland, United States)
Date Acquired
April 2, 2021
Publication Date
August 27, 2019
Publication Information
Publication: Atmosphere
Publisher: MDPI
Volume: 10
Issue: Special Issue
Issue Publication Date: August 27, 2019
e-ISSN: 2073-4433
URL: https://www.mdpi.com/2073-4433/10/9/500
Subject Category
Geosciences (General)
Funding Number(s)
WBS: 281945.02.04.03.16
CONTRACT_GRANT: GSFC - 613.0
CONTRACT_GRANT: KMI2018-03410.
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
Technical Review
External Peer Committee
Keywords
snow darkening effect
soil moisture
hydrological cycle
No Preview Available