NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Material Response Analysis of PICA-NuSil at the Hypersonic Materials Environmental Test SystemPhenolic impregnated carbon ablator (PICA) is a thermal protection system (TPS) that gained heritage during the Stardust mission and is the baseline TPS material for expeditions to Mars (e.g., Mars Science Laboratory and Mars 2020).1 PICA is friable; therefore, a polysiloxane resin (NuSil CV-1144-0) is deposited onto the surface of flight hardware before assembly, test, and launch operations (ATLO) to mitigate particle shedding. Furthermore, the Mars Science Laboratory (MSL) and Mars 2020 heatshields were instrumented with an array of thermocouple plugs (MEDLI Integrated Sensor Plugs or MISP) designed to measure the in-depth thermal response of PICA during flight. Post-flight analysis of MISP data suggests that recession was lower than predicted, and NuSil is suspected as a reasonable cause.

NuSil primarily consists of a copolymer blend of dimethyl and diphenyl-substituted polysiloxane resin. Four decades of research in the field of polymer-derived ceramics demonstrate that polysiloxane resins form oxidation-resistant silicon oxycarbide materials at pyrolysis temperatures as low as 800 °C.-2 Furthermore, silicon oxycarbide materials exhibit excellent thermal stability at relatively high-temperatures (< 1200 °C) but eventually decompose via carbothermal reduction.-3 Therefore, it is reasonable to suggest that NuSil forms an oxidation-resistant thermal barrier coating on the TPS surface and influences the material response during atmospheric entry. Evidence for this notion was observed during prior arc-jet testing at both the Aerodynamic Heating Facility (AHF) and the Panel Test Facility (PTF) at the NASA Ames Research Center. Articles of PICA were subjected to testing in airflow, and a temperature discontinuity was recorded at the surface of coupons coated with NuSil. A glassy coating was observed to form at the surface in shear flow configurations (wedge and panel) under moderate heat fluxes. Furthermore, state-of-the-art material response models have yet to account for the underlying physics and chemistry of the temperature discontinuity. To this end, a pathfinder test campaign was executed at the Hypersonic Materials Environmental Test System (HyMETS) to enhance the fundamental understanding of PICA-NuSil ablation phenomena and provide a preliminary data set to aid in the development of material response models.
Document ID
20220016996
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Brody K Bessire
(Ames Research Center Mountain View, California, United States)
Jeremie B E Meurisse
(Analytical Mechanics Associates Moffett Field, CA, United States)
Nagi N Mansour
(Analytical Mechanics Associates (United States) Hampton, Virginia, United States)
Francesco Panerai
(University of Illinois at Urbana Champaign Urbana, Illinois, United States)
Date Acquired
November 9, 2022
Subject Category
Chemistry And Materials (General)
Meeting Information
Meeting: AIAA Aviation Forum and Exposition
Location: San Diego, CA
Country: US
Start Date: June 12, 2023
End Date: June 16, 2023
Sponsors: American Institute of Aeronautics and Astronautics
Funding Number(s)
WBS: 335803.04.22.21.10
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
Technical Review
Single Expert
Keywords
PICA
NuSil
Ablation
Silicon Oxycarbide
No Preview Available