DAVINCI: Venus Atmospheric Model ComparisonsThe Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging(DAVINCI) mission aims to answer long-standing questions regarding Venus’ origin using Zephyr, an atmospheric descent probe. Zephyr will be the first probe to take high-resolution aerial photographs of a mountainous tesserae surface as it descends over the Alpha Regio highlands region, which has the oldest surfaces of Venus. The Zephyr’s descent trajectory that determines the touchdown in the Alpha Regio, which is crucial for the DAVINCI mission, depends on Venus’ atmospheric properties and winds. Unfortunately, the atmospheric data for Venus from previous missions is sparse. Therefore, it is essential to consider various atmospheric models and scenarios from past flight data to predict Zephyr’s flight performance, specifically landing ellipse. To this end, this work compares three atmospheric models: the Venus Global Reference Atmospheric Model (Venus-GRAM), the Venus Climate Database(VCD), and an empirical wind model developed by Ralph Lorenz for the DAVINCI trajectory simulation and modeling. This paper compares the mean and variations of different atmospheric properties and winds from these atmospheric models. In addition, this work combines the atmospheric properties and the wind variability from the Venus-GRAM with the winds from the Lorenz-based model to have more stressing Venus wind dispersions that allow for more conservative trajectory analysis. Furthermore, this work relies on the DAVINCI landing ellipse size as a metric to measure how robust the trajectory analysis will be to the change in the atmospheric properties and winds of the Venus atmosphere.
Document ID
20230016933
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Pardha Sai Chadalavada (Analytical Mechanics Associates (United States) Hampton, Virginia, United States)
Matthew J Andreini (Analytical Mechanics Associates (United States) Hampton, Virginia, United States)
Michael S Manwell (Analytical Mechanics Associates (United States) Hampton, Virginia, United States)
Soumyo Dutta (Langley Research Center Hampton, Virginia, United States)
Date Acquired
November 20, 2023
Publication Date
January 12, 2024
Publication Information
Subject Category
Lunar and Planetary Science and Exploration
Meeting Information
Meeting: AIAA SciTech Forum and Exposition
Location: Orlando, FL
Country: US
Start Date: January 8, 2024
End Date: January 12, 2024
Sponsors: American Institute of Aeronautics and Astronautics