NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Evolutionary Flexibility and Rigidity in the Bacterial Methylerythritol Phosphate (Mep) PathwayTerpenoids are a diverse class of compounds with wide-ranging uses including as industrial solvents, pharmaceuticals, and fragrances. Efforts to produce terpenoids sustainably by engineering microbes for fermentation are ongoing, but industrial production still largely relies on nonrenewable sources. The methylerythritol phosphate (MEP) pathway generates terpenoid precursor molecules and includes the enzyme Dxs and two iron–sulfur cluster enzymes: IspG and IspH. IspG and IspH are rate limiting-enzymes of the MEP pathway but are challenging for metabolic engineering because they require iron–sulfur cluster biogenesis and an ongoing supply of reducing equivalents to function. Therefore, identifying novel alternatives to IspG and IspH has been an on-going effort to aid in metabolic engineering of terpenoid biosynthesis. We report here an analysis of the evolutionary diversity of terpenoid biosynthesis strategies as a resource for exploration of alternative terpenoid biosynthesis pathways. Using comparative genomics, we surveyed a database of 4,400 diverse bacterial species and found that some may have evolved alternatives to the first enzyme in the pathway, Dxs making it evolutionarily flexible. In contrast, we found that IspG and IspH are evolutionarily rigid because we could not identify any species that appear to have enzymatic routes that circumvent these enzymes. The ever-growing repository of sequenced bacterial genomes has great potential to provide metabolic engineers with alternative metabolic pathway solutions. With the current state of knowledge, we found that enzymes IspG and IspH are evolutionarily indispensable which informs both metabolic engineering efforts and our understanding of the evolution of terpenoid biosynthesis pathways.
Document ID
20240002040
Acquisition Source
2230 Support
Document Type
Reprint (Version printed in journal)
Authors
Bailey Marshall
(University of Wisconsin–Madison Madison, United States)
Kaustubh Amritkar
(University of Wisconsin–Madison Madison, United States)
Michael Wolfe
(University of Wisconsin–Madison Madison, United States)
Betül Kaçar
(University of Wisconsin–Madison Madison, United States)
Robert Landick
(University of Wisconsin–Madison Madison, United States)
Date Acquired
February 14, 2024
Publication Date
November 8, 2023
Publication Information
Publication: Frontiers in Microbiology
Publisher: Frontiers Media
Volume: 14
Issue Publication Date: November 7, 2023
ISSN: 1664-302X
Subject Category
Life Sciences (General)
Funding Number(s)
CONTRACT_GRANT: 80NSSC22K0546
CONTRACT_GRANT: DE-SC0018409
CONTRACT_GRANT: RGY0072/2021
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
Technical Review
No Preview Available