NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The H-poor nature of incompletely melted planetesimals: The view from acapulcoites and lodranitesThe abundance of H in planetary building blocks is of fundamental importance for constraining the evolution of the terrestrial planets. It is commonly assumed that chondrites are the principal sources of Earth’s H; however, recent studies have suggested that primitive achondrites and achondrites may retain a small complement of H. There are few constraints on the H budgets of primitive achondrites, which represent the transition from unmelted to melted planetesimals, but prior work suggests that bulk parent body H contents are several orders of magnitude lower than typical chondritic values. Therefore, to provide further constraints on H retention during the transition from unmelted to melted planetesimals, we have measured the H contents of olivine, orthopyroxene, clinopyroxene, and plagioclase from a suite of acapulcoite-lodranite clan meteorites. Acapulcoite-lodranite clan meteorites represent the “prototypical” primitive achondrite parent body and have bulk major element compositions more akin to the Earth than previously studied primitive achondrites (e.g., the ureilites). We find that the H2O contents of olivine (∼5–12 µg/g H2O), orthopyroxene (∼3–10 µg/g H2O), and clinopyroxene (∼5–8 µg/g H2O) are broadly similar, while plagioclase (∼2.5–5 µg/g H2O) tends to be offset to lower values. Using a simple, single-stage batch-melting model, we calculate a preferred maximum acapulcoite-lodranite parent body H2O content of 38 µg/g, which is similar to other estimates for primitive achondritic and achondritic parent bodies. Furthermore, assuming chondrite-like precursor materials, our data are consistent with efficient loss of H prior to or during the onset of melting of early-formed planetesimals. This requires that Earth’s H-budget was dominated by building blocks that underwent minimal thermal processing.
Document ID
20240002923
Acquisition Source
2230 Support
Document Type
Accepted Manuscript (Version with final changes)
Authors
Liam D. Peterson ORCID
(University of Maryland, College Park College Park, United States)
Megan E. Newcombe ORCID
(University of Maryland, College Park College Park, United States)
Conel M.O'D. Alexander
(Carnegie Institution for Science Washington, United States)
Jianhua Wang ORCID
(Carnegie Institution for Science Washington, United States)
Sune G. Nielsen ORCID
(Woods Hole Oceanographic Institution Falmouth, United States)
Date Acquired
March 7, 2024
Publication Date
February 10, 2024
Publication Information
Publication: Geochimica et Cosmochimica Acta
Publisher: Elsevier
Volume: 370
Issue Publication Date: April 1, 2024
ISSN: 0016-7037
e-ISSN: 1872-9533
Subject Category
Geosciences (General)
Funding Number(s)
CONTRACT_GRANT: 80NSSC22K0043
CONTRACT_GRANT: 80NSSC20K0336
Distribution Limits
Public
Copyright
Use by or on behalf of the US Gov. Permitted.
Technical Review
Keywords
Primitive achondrite
water
volatiles
differentiation
No Preview Available