NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A method for modeling finite-core vortices in wake-flow calculationsA numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.
Document ID
19840035292
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Stremel, P. M.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 12, 2013
Publication Date
January 1, 1984
Subject Category
Aerodynamics
Report/Patent Number
AIAA PAPER 84-0417
Accession Number
84A18079
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available