NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Taylor-Goertler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary layer equationsThe Taylor-Gortler vortex instability equations are formulated for steady and unsteady interacting boundary layer flows of the type which arise in triple-deck theory. The effective Gortler number is shown to be a function of the all shape in the boundary layer and the possibility of both steady and unsteady Taylor-Gortler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Gortler vortices exist before the boundary layers at the wall develop the Goldstein singularity. As an example of an unsteady spatially varying basic state the instability of high frequency large amplitude Tollmien-Schlichting waves in a curved channel were considered. It is shown that they are unstable in the first Stokes layer stage of the hierarchy of nonlinear states. The Tollmien-Schlichting waves are shown to be unstable in the presence of both convex and concave curvature.
Document ID
19860006158
Acquisition Source
Legacy CDMS
Document Type
Preprint (Draft being sent to journal)
Authors
Hall, P.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
September 5, 2013
Publication Date
October 1, 1985
Subject Category
Fluid Mechanics And Heat Transfer
Report/Patent Number
NASA-CR-178010
ICASE-85-47
NAS 1.26:178010
Accession Number
86N15628
Funding Number(s)
CONTRACT_GRANT: NAS1-17070
PROJECT: RTOP 505-31-83-01
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available